Delta neutral G function of Meijer and H function of Fox in the neighbourhood of finite branch point DMITRII KARP

Far Eastern Federal University, Vladivostok, Russia Email: dimkrp@gmail.com

Meijer's G function $G_{p,q}^{m,n}(z)$ is called delta neutral if p = q = m + n. It is a particular case delta neutral Fox's $H_{p,q}^{m,n}$ function, defined by the conditions that $\Delta = \sum_{i=1}^{q} B_i - \sum_{i=1}^{p} A_i = 0$ and $\sum_{i=1}^{m} B_i = \sum_{i=n+1}^{p} A_i$, where $A_i, B_i > 0$ are scaling factors in the gamma functions in the integrand of the H function. The delta neutral H function is comprised of two analytic functions, one defined inside the disk $|z| < \rho$ and the other outside this disk, where $\rho = \prod_{i=1}^{q} B_i^{B_i} \prod_{j=1}^{p} A_j^{-A_j}$. These functions are not analytic continuations of each other. The point $z = \rho$ (in case of G function $\rho = 1$) is, generally speaking, a branch point of both "inner" and "outer" functions. In the talk we discuss the basic case of the delta neutral $H_{p,q}^{p,0}(z)$. The behavior of its particular case $G_{p,p}^{p,0}(z)$ in the neighborhood of z = 1 was studied by Nørlund. We generalize some of his results to the H function case. In particular, we present an expansion in the neighborhood of the branch point $z = \rho$, give a new integral equation satisfied by this function and propose a conjecture regarding its zeros. At the core of some of our proofs lies a (presumably new) expansion in the inverse factorial series for the integrand of the H function. Furthermore, we discuss positivity of the delta neutral H function and present some new facts for Meijer's G function.

Results presented in the talk have been obtained jointly with E.G. Prilepkina. The research has been supported by the Russian Science Foundation under project 14-11-00022.